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Forbidden bifurcations and parametric amplification in a Josephson-junction array
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We test a general theory of parametric amplification by globally coupled arrays via numerical
simulations of a shunted Josephson-junction series array operated in the three-photon mode. We
find good agreement in a number of particulars: optimal amplification of periodic signals occurs near
the onset of symmetry-preserving bifurcations, and gain curves follow characteristic scaling laws. We
also uncover an unexpected result: the resistively shunted Josephson-junction array cannot undergo

the desired bifurcation; nevertheless, substantial amplification is still possible.

disordered arrays is also considered.
PACS number(s): 05.45.+b, 85.25.Cp, 74.40.+k

I. INTRODUCTION

Near a bifurcation the dynamics of a system can often
be simplified via a center manifold reduction, sometimes
to a single variable [1]. This has led to a successful gen-
eral theory of the effects of near-resonant perturbations
on dynamical systems near codimension-one bifurcations
[2-8]. Physically, this is of interest both for understand-
ing the effects of noise and for exploiting the bifurcation
to amplify small signals. The theory extracts scaling be-
havior which is independent of the physical details of
the system and has been successfully applied to a diverse
range of experimental systems, including magnetorestric-
tive ribbons [9,10], driven bouncing balls [11,12], NMR
lasers [13], semiconductor lasers [14], parametric nu-
clear magnons in an antiferromagnetic crystal [15], and
Josephson-junction parametric amplifiers [16].

The problem of Josephson-junction parametric ampli-
fiers is particularly important. These have potential for
several applications as small signal detectors: for radioas-
tronomy in the millimeter and submillimeter wave regime
[17,18], the study of radiation fields of Rydberg atoms in
high-Q microwave cavities [19, 20], and as back-action-
evading amplifiers in Weber-bar-type gravitational wave
detectors [21]. Josephson-junction parametric amplifiers
have also been used to generate squeezed electromag-
netic radiation, of interest in studying the interaction of
squeezed states with Rydberg atoms [20, 22].

Single junctions have drawbacks, however. They have
low power, low impedance, and limited dynamic range
[23]. In principle these shortcomings can be overcome
by linking many junctions in a series array. The above-
mentioned general theory cannot be applied to arrays
because their bifurcations are typically more complicated
than those of a single-element system. Consequently, the
dynamics does not necessarily reduce to just a few active
variables. Recently, the theory for perturbations near bi-
furcations was extended to the case of globally coupled os-
cillators, which is directly relevant to Josephson-junction
series arrays [24]. Since this theory is based on a lin-
earized analysis it must break down both sufficiently close
to the bifurcation point and for sufficiently large signals.
In these regimes systems display inherently nonlinear ef-
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fects [6, 7], which are well understood for single-oscillator
amplifiers, but not for their array counterparts [16, 25].

In this paper, we test the predictions of the linearized
theory numerically, by considering a Josephson-junction
series array shunted by a load. We find good agreement
with the general aspects of the theory: the highest gain
occurs near the onset of symmetry-preserving bifurca-
tions, and the gain curves follow the predicted scaling
laws. We also discover an unexpected but potentially
important result peculiar to the Josephson array system.
Namely, the resistively shunted Josephson-junction array
cannot undergo an in-phase symmetry-preserving bifur-
cation. On the face of it, this would seem to prohibit
its usefulness as a parametric amplifier, but in fact we
show that substantial (though not optimal) gain is still
possible under the right circumstances.

In the next section, we review the basic results of the
amplifier array theory as they pertain to the Josephson-
junction array example. We discuss the forbidden bifur-
cations in Sec. III, as well as a modification of the circuit
which removes the forbidden bifurcation. The results of
our numerical simulations are presented in Sec. IV, fol-
lowed by a discussion in Sec. V.

II. THEORETICAL PREDICTIONS

The theory for parametric amplification by globally
coupled arrays considers systems whose dynamics are de-
scribed by equations of the form

N
T =F mk,z:cj,u , k=1,...,N,
Jj=1

where zj is a vector, u is a control parameter, and each
oscillator zj, is coupled to the others only via the average
behavior of the array. Equations of this form come up
quite naturally in the study of series and parallel array
circuits [26, 27], as well as certain solid state laser ar-
rays [28] and multimode lasers [29-31]. For example, the
Josesphson-junction array depicted in Fig. 1 is governed
by the dynamical equations
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N
. . . 1 .
Or + Yk + sin g + & E 1 ¢j = Iqc + Iac cos(wt)
i=
+acos(wst + A) ,

k=1,2,...,N. (1)

These are the lump circuit equations in dimension-
less form, using the Stewart-McCumber equivalent cir-
cuit model for the junctions [32]. Here, ¢ is the quan-
tum phase difference across the kth junction, 7 is de-
fined as 1/+4/B., where 3. is the McCumber parameter
of the junction, R is the resistance shunting the array of
junctions, expressed in units of the resistance of a single
Josephson junction, and I4. + Iac cos(wt) is the applied
bias current. The external signal is represented by the
additional current source a cos(wst + A).

The reason the simple single-element theory does not
apply here is because of the symmetry inherent in the ar-
ray problem. Mathematically, this means that the usual
classification scheme [1] of bifurcations breaks down,
and the problem becomes more complicated (though still
tractable [33]). Physically, if the oscillators are identi-
cal, or nearly identical, the clean separation of a single
time scale does not necessarily occur, which violates a
fundamental assumption of the single-oscillator theory.
Even so, for the case of global coupling a modified ap-
proach for the linearized part of the dynamics has been
worked out. The central prediction of that analysis is
that optimal amplification occurs only near the onset of
symmetry-preserving bifurcations of the in-phase state.
By definition, the in-phase state corresponds to the situ-
ation where all of the oscillators have the same wave form
and phase; they oscillate with perfect coherence [pr(t) =
@o(t) for all k]. All instabilities of the in-phase state can
be classified as either symmetry preserving or symme-
try breaking, depending on whether the instability pre-
serves or destroys the coherence. (Roughly speaking, if
the oscillators remain in phase after the bifurcation, this
is a symmetry-preserving bifurcation; otherwise, it is a
symmetry-breaking bifurcation.)

In the simulations, we focus on period doubling bifur-
cations of the in-phase state, which corresponds to the
so-called three-photon mode: in principle this instabil-
ity can be either symmetry breaking or symmetry pre-
serving, depending on the system parameters. In the
symmetry-preserving case, the amplification of a peri-
odic input signal of frequency w; is predicted to follow
the scaling law

(12

2
S(we) x N 555

where § = w, — %w is the detuning frequency, € is the
bifurcation parameter (equal to zero precisely at the bi-
furcation point), and N is the number of Josephson junc-
tions in the array. This is the same scaling law as for the
single-element case [3] with the important addition of
the prefactor N?, which illustrates the advantage of us-
ing arrays. (In fact, it is more appropriate to consider
the power delivered to a matched load, i.e., a load whose
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FIG. 1. Schematic of resistively shunted Josephson-
junction array. Junctions are represented by Stewart-
McCumber equivalent circuits (resistor, capacitor, and ideal
junction in parallel).

impedance increases linearly with N, in which case the
power delivered is proportional to NV.) In contrast, near a
symmetry-breaking bifurcation the array theory predicts
that there is no significant amplification of the periodic
perturbation. However, our simulations show that this is
overly pessimistic: though the gain is not so large as near
a symmetry-preserving bifurcation, it is still possible to
get substantial gain near a symmetry-breaking instabil-
ity. This observation is especially important since it may
be impossible in a given system for the in-phase state to
undergo a symmetry-preserving bifurcation. Indeed, the
Josephson-junction array depicted in Fig. 1 with positive
resistive load appears to be an example of this, as we now
discuss.

III. FORBIDDEN BIFURCATIONS

Before turning to our numerical results, we discuss an
important property of this particular dynamical system.
Namely, we have found that the in-phase attractor al-
ways undergoes a symmetry-breaking instability provided
the load resistance R > 0. While we have not been able
to prove this statement rigorously, we can understand
this behavior by the following heuristic argument.

Consider an attracting in-phase solution of the unper-
turbed Eq. (1) (a = 0) so that all p(t) are equal to the
same function @o(t). If we linearize Eq. (1) about this
solution we get

N
. . 1 .
Ex + YEk + cos[po(t)]er + Ejg_lej =0, k=1,...,N,

(2)

where £ (t) = ¢r(t) — @o(t). Now we introduce the fol-
lowing change of variables:

N =€&; — €541 j=1,...,N—1,

N
H = ZE]' .
i=1

The N equations decouple with the N — 1 equations
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ik + Y7k + cos[po(t)lm =0, k=1,...,N—1 (3)

describing relative differences in voltage between adja-
cent oscillators and one equation

ﬂ+(7+

describing the total voltage drop. Equations (3) and (4)
determine the stability of the in-phase solution. Since
this solution is (by assumption) an attractor, all of the
2N complex Floquet exponents have negative real parts.
If, as a control parameter is varied, any of the exponents
of Eq. (3) cross into the right half plane, the bifurca-
tion is of the symmetry-breaking type. If exponents of
Eq. (4) cross into the right half plane, the bifurcation is
symmetry preserving.

The crucial observation is that these equations differ
only by the presence of the parameter N/R in Eq. (4).
We can think of Egs. (3) and (4) as the same equations of
motion for parametrically driven linear oscillators, with
different damping parameters. Physically, the effect of
having N/R > 0 is to increase the damping in Eq. (4),
and so makes it more stable than Eq. (3). We conclude
that the symmetry-preserving bifurcation is “forbidden”:
any instability of the in-phase attractor is necessarily
symmetry breaking.

This conclusion is borne out by our numerical simu-
lations. Moreover, this same argument suggests how we
can modify the dynamical system to achieve symmetry-
preserving bifurcations of the in-phase attractor. If the
load resistance is negative, we expect the symmetry-
breaking bifurcation to be forbidden. This is exactly
what we find in our simulations. Thus, by considering
both signs of R in our simulations, we are able to test
the full range of theoretical predictions using Eq. (1).
While our main purpose in considering the case R < 0 is
to allow a more complete test of Ref. [24], this is not nec-
essarily an unphysical situation. Active circuit devices
known as negative impedance converters (NIC) [34, 35]
can be used to mimic a negative resistance. On the other
hand, existing NIC devices operate well below the very
high frequencies that ‘make Josephson-junction arrays of
interest as parametric amplifiers.

%) H + coslpo(t)|H = 0 (4)

IV. NUMERICAL RESULTS

We used a fourth-order Runge-Kutta scheme to inte-
grate Eq. (1) and computed the resulting power spectra
using the Parzen algorithm [36]. The parameters used
in the simulations, unless otherwise noted, are as follows.
For the symmetry-preserving bifurcation, v = 0.625,
R = —5N/y, I4 = 0.25, and I, = 1.1754. For the
symmetry-breaking bifurcation, v = 0.125, R = N/3~,
Iy = 0.25, and I,. = 0.9915. In physical terms, keep-
ing the ratio R/N fixed corresponds to making sure the
load impedance is matched to the array impedance as
the array size grows [37]. We were careful to choose
parameter values that kept the real part of the critical
Floquet exponent € close to about —0.0100 in all cases.
The drive frequency was taken to be w = 1.0, so that the
resonance frequency is 0.5 (in all cases considered here,

- the bifurcations are period doubling), and the step size

in the Runge-Kutta routine is 27/1024.

Figure 2 shows the signal gain plotted versus the de-
tuning frequency near a symmetry-preserving bifurcation
for N = 2, 5, and 10. Here we keep € fixed at —0.0100
and vary é between —0.078125 and +0.078 125. (The ob-
served gain depends somewhat on the relative phase A
between the signal and the pump. This effect is signifi-
cant only for the smallest arrays, and so the N = 2 data is
averaged over ten runs corresponding to different values
of A which was enough to render the standard deviation
smaller than the size of the squares.) In each case, the
data were fit to the predicted scaling form N2/(e2? + §2)
(the solid lines), i.e., we made a one parameter fit for the
overall amplitude of the Lorentzian. As expected, these
curves are symmetric about 6 = 0. The three curves have
the same shape, but the overall gain increases as N in-
creases. For a fixed detuning, the gains for N = 2,5,10
(measured at resonance) are in the ratio 4:25.12:107.43,
which is in good agreement with the expected N2 scahng
of 4:25:100.

Figure 3 shows the results in the case where the array
is tuned close to a symmetry-breaking bifurcation. The
prediction of the theory is that no significant amplifica-
tion takes place [24]; however, the figure shows curves
similar to Fig. 2, albeit with lower overall amplification
factors. We can understand this behavior by noting that
while the symmetry-breaking exponent is esg = —0.0100,
the symmetry-preserving exponent is esp = —0.106. In
other words, for these parameter values the system is in
some sense simultaneously close to both types of bifurca-
tion, though not close enough to use esp to quantitatively
predict the curves. This may have important practical
implications, since it shows that substantial gain may
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FIG. 2. Output power of array operating near symmetry-

preserving bifurcation, plotted vs the detuning § for N = 2,
5, and 10. O’s are N = 2, o’s are N = 5, and ¢’s are N = 10.
Solid lines are data fitted to the prediction. Parameters are
a = 0.001 and esp = —0.0100.
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FIG. 3. Output power of array operating near symmetry-

breaking bifurcation, plotted vs the detuning é for N = 2, 5,
and 10. O’s are N = 2, o’s are N = 5, and o’s are N = 10.
Parameters are a = 0.001 and esg = —0.0100.

still be possible even when the symmetry-preserving bi-
furcation is forbidden.

To investigate this effect further, in Fig. 4 we compare
the symmetry-preserving bifurcation considered earlier
with a ”"degenerate” case with esp = —0.0100 and esp =
—0.0062. We plot the normalized response as a function
of the signal frequency for array size N = 10. This sit-
uation is not treated in the theory paper. Naively, one
might hope that the results near symmetry-preserving
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FIG. 4. Comparison of output power for symmetry-

preserving case and degenerate (both symmetry-preserving
and symmetry breaking) case. Parameters are N = 10,
a = 0.001, esp = —0.0100 for the symmetry-preserving case,
represented by O’s; and esp = —0.0100, esg = —0.00621 for
the degenerate case, represented by o’s.

STEVE NICHOLS AND KURT WIESENFELD 48

. and symmetry-breaking bifurcations are simply additive

for sufficiently small signals, but this is not quite what
we see. Rather, the gain for the degenerate case is down
by a factor of about 1.6; however, considerable amplifica-
tion is still achieved. We conclude that while the optimal
amplification associated with a symmetry-preserving bi-
furcation may not be achievable in the resistively shunted
Josephson-junction array, large amplification is still pos-
sible by using a large enough shunt resistance so that
esp ~ esp. Of course, larger shunt resistances also di-
minish the power delivered to the load.

Finally, we turn to the case of nonidentical junctions.
To our knowledge, there is no existing analytic theory of
amplification by such “imperfect” arrays, despite its obvi-
ous practical importance. This problem involves a num-
ber of subtleties (see below) which deserve careful study;
however, our immediate concern is limited to the ques-
tion of whether amplification by identical arrays is qual-
itatively different from arrays with just a small amount
of disorder. Some degradation is expected, of course, but
since disorder breaks the underlying symmetry of the dy-
namical system, one might worry that the disordered ar-
ray is a fundamentally different problem. To investigate
this, we introduced a spread in the junction parameters
characterized by a single parameter, as follows. For a
given N and mean value of v, to break the symmetry by,
for instance, 10%, we assign the ¥’s to N evenly spaced
increments between 0.9y and 1.1vy. In Fig. 5 we show
gain curves for three different cases: 0%, 1%, and 10%
spread in the junction parameters. In each case, the sim-
ulation was performed for a five-element array tuned near
a symmetry-preserving bifurcation of the in-phase state.
For the data shown, the gain at resonance is down by a
factor of about 10% for a 1% spread and by 50% for a
10% spread in the parameters.
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FIG. 5. Comparison of output power for three different

parameter spreads, O’s for 0%, o’s for 1%, and ¢’s for 10%.
The parameter Io. is tuned so that in all cases, the arrays
have esp = —0.0100. The array has five junctions and is
being operated near a symmetry-preserving bifurcation.
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We reiterate that the introduction of disorder involves
some subtle theoretical issues, which we now discuss.
First, with nonidentical elements there is no true “in-
phase state” where all the elements have precisely the
same wave form. Similarly, there is no true symmetry
in the problem to be preserved or broken by dynamical
instabilities. For small amounts of disorder, however, we
found that we could still identify the nearest thing to the
ideal in-phase state, and that the Floquet exponents of
this state divided into two groups in close correspondence
with the perfect array. In other words, there is a solution
branch which is the continuation of the exact in-phase
state as one “turns on” the disorder. We retain the ter-
minology used in the identical-element problem for con-
venience; however, such direct correspondences become
problematic for high levels of disorder. Another com-
plication is that the introduction of disorder affects the
Floquet exponents: for our particular choice of disorder,
increasing the spread in parameters moves the critical
Floquet exponent toward the imaginary axis, i.e., moves
the system closer to the bifurcation point. For exam-
ple, with the fixed value I,. = 1.1754, corresponding to
esp = —0.0100 at a 0% spread in the parameters, the
array will actually reach a bifurcation at about an 8%
spread. Therefore holding I,. fixed and increasing the
disorder can result in an increase in gain. A more mean-
ingful comparison is to vary the parameter spread while
keeping esp fixed, which we accomplished by simultane-
ously varying I,.. For the data shown in Fig. 5, we used:
I, = 1.1754 for 0%, 1.1749 for 1%, and 1.1064 for 10%,
all corresponding to a fixed value of esp = —0.0100.

We conclude that developing a good theory of the ef-
fects of disorder on amplifier arrays is an interesting but
subtle problem; a truly systematic numerical study must
go well beyond the simple simulations presented in Fig.
5. Nevertheless, these data give qualitative evidence that
the scaling behavior for the identical array is a meaning-
ful limit, and this limit (which is analytically tractable)
may be a good starting point for a perturbation theory
that incorporates quenched disorder.

V. CONCLUSION

Our simulations tested the analytic linearized theory
for small signal amplification in globally coupled oscil-
lator arrays [24], using the dynamical equations for a
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one-dimensional series Josephson-junction array in par-
allel with a simple load. In all the cases we considered,
the unperturbed array has an attracting in-phase state.
Our results are in good agreement with the analytic pre-
dictions in a number of respects, the most important be-
ing that optimal amplification occurs when the array is
tuned near a symmetry-preserving bifurcation. The gain
curves follow the expected Lorentzian shape, and scale
as N? which recommends the advantage of very large ar-
rays, though the largest array considered in this paper
was N = 10. Comparisons of arrays with different N
were made with matched loads—that is, the ratio R/N
was held fixed where R is the load resistance—so that
the power delivered to the load scales linearly with NV in
the optimal case.

To our surprise, we found that the Josephson-junction
array with resistive load is unable to undergo the de-
sired symmetry-preserving bifurcation. Even so, we dis-
covered that significant amplification could be achieved
near a symmetry-breaking bifurcation, though the over-
all gain level was never as high as that for the corre-
sponding symmetry-preserving bifurcation. Our theoret-
ical understanding of the origin of the “forbidden bifur-
cation” for this array configuration led us to consider
a negative impedance load, which indeed displayed the
symmetry-preserving bifurcation.

Finally, we tested the robustness of the amplification
by considering an array with nonidentical elements. We
found that a spread of a few percent in the McCumber pa-
rameter gradually degraded the array performance, and
did not abruptly extinguish the gain, even though dy-
namics has precise symmetry only in the case of zero
disorder. Despite its obvious practical importance, little
is known about the dynamics of nonidentical elements
embedded in an oscillator array. Further work on this
topic is under way.
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